https://www.high-endrolex.com/10

Contemporary Materials 2022 - Savremeni materijali - confOrganiser.com

Contemporary Materials 2022 - Savremeni materijali

8 - 9.9.2022.

Neural Networks for Solving Huxley's equation

Аутори:
1. Богдан Милићевић, Факултет инжењерских наука Универзитета у Крагујевцу, Serbia
2. Милош Ивановић, Univerzitet u Kragujevcu, Prirodno-matematički fakultet, , Serbia
3. Бобан Стојановић, Univerzitet u Kragujevcu, Prirodno-matematički fakultet, , Serbia
4. Ненад Филиповић, Универзитет у Крагујевцу, Serbia


Апстракт:
Biophysical muscle models, also known as Huxley-type models, are appropriate for simulating non-uniform and unsteady contractions. Large-scale simulations can be more challenging to use because this type of model can be computationally intensive. The method of characteristics is typically used to solve Huxley's muscle equation, which describes the distribution of connected myosin heads to the actin-binding sites. Once this equation is solved, we can determine the generated force and the stiffness of the muscle fibers, which may then be employed in the macro-level simulations of finite element analysis. In our paper, we developed a physics-informed surrogate model that functions similarly to the original Huxley muscle model but uses a lot less computational resources in order to enable more effective use of the Huxley muscle model.

Кључне речи:
physics-informed neural networks, numerical analysis, machine learning, Huxley’s muscle model,physics-informed neural networks, numerical analysis, machine learning, Huxley’s muscle model

Тематска област:
СИМПОЗИЈУМ Б - Биоматеријали и наномедицина

Датум пријаве сажетка:
28.07.2022.

Конференцијa:
Contemporary Materials 2022 - Savremeni materijali

Сажетак рада

Copyright © 2021 confOrganiser.com. All rights reserved. | BitLab

https://www.high-endrolex.com/10